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Exact solution of a generalized model for surface deposition
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We consider a model for surface deposition in one dimension, in the presence of both precursor-layer
diffusion and desorption. The model is a generalization that includes random sequential adsorption~RSA!,
accelerated RSA, and growth-and-coalescence models as special cases. Exact solutions are obtained for the
model for both its lattice and continuum versions. Expressions are obtained for physically important quantities
such as the surface coverage, average island size, mass-adsorption efficiency, and the process efficiency. The
connection between a limiting case of the model and epidemic models is discussed.
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Random sequential adsorption~RSA! @1–3# is a model
process by which particles are irreversibly deposited, with
overlap and without positional correlation, onto a surfa
from a gas@4#, or solution@5#. Once deposited, the particle
cannot move on the surface, nor desorb back into the fl
phase. The model describes a physical situation in wh
impenetrable particles interact weakly with one another,
where diffusion and desorption are negligible. Many exte
sions of the RSA model have been proposed in orde
include, for example, diffusion on or desorption from t
substrate@3,6# and local rolling and rearrangement of pa
ticles @7#.

Motivated by theoretical@8# and experimental@9# work,
in Ref. @10# we introduced a model in which it is possible fo
the particles to diffuse on top of previously deposited p
ticles. More precisely, in this model, the deposition of a p
ticle is attempted at a randomly selected position on the
face. If the position is full or partly occupied, then th
incident particle diffuses along the top of the deposited p
ticles until it finds a space large enough to accommodat
then, the particle is deposited instantly and irreversibly.
the language of surface chemistry@4,11#, this model de-
scribes systems in which particles can becomephysisorbed
and diffuse in aprecursor state, until they becomechemi-
sorbed at some later time. In Ref.@12# this process was
called accelerated random sequential adsorption~ARSA!.
Exact results were obtained for the gap distribution funct
and for physically relevant quantities, such as the surf
coverage, the average island size, and the probabilitie
island nucleation, growth, and aggregation, in one dimens
~1D!. The continuum version of the model was also studi
Later, these results were extended@13# to study the acceler
ated random sequential adsorption of particles on to a sur
with random impurities.

More recently, a new application has been proposed
the ARSA model. In Ref.@14#, the model was used to stud
a computer science algorithm called linear probing w
hashing@15#. This is an efficient and widely used algorith
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for inserting items into a table. The cost function of the
gorithm is related to the number of sites that a precurs
diffusing particle visits before being deposited.

In this Brief Report, we extend our previous results
include the possibility of desorption from the precursor sta
In order to do so, we consider a generalized model for de
sition, which comprises RSA, ARSA, and other processes
particular cases. This extension is motivated by the fact
the energy bond in the physisorbed state is weaker than
in the chemisorbed state, so particles can more easily de
from the precursor state@4,8,11#. This situation corresponds
in the computer table-filling algorithm, to a probability o
failure when the duration of the search operation is too lo

We consider the ARSA ofkmers~i.e., particles of sizek)
onto a linear lattice@10#. The rate of successful deposition
following precursor diffusion isD and, as usual, the rate o
successful direct depositions on empty sites is set to 1. C
D50 and D51 correspond to standard RSA and ARS
@10,12#, respectively. The introduction of this parameter w
first discussed in Ref.@10#, although only caseD51 was
studied there. AllowingD to vary between 1 and 0 accoun
for additional possibilities: an incoming molecule might b
more likely to be scattered from an occupied region th
from an empty region, or once in the precursor state, it mi
desorb before reaching an empty site where it can be de
ited. The complementary caseD.1 also has physical mean
ing. For example, it represents situations where molecu
are more likely to stick to the substrate, at the edge of gro
ing clusters of identical molecules. The limitD→` corre-
sponds to a special case of ARSA, with growth and coa
cence~from an initial distribution of ‘‘seeds’’ or impurities!
but without subsquent nucleation. The interval 0<D<1 is
perhaps the most relevant to surface adsorption systems

Let Cr(t) denote the average density ofgapsof length r
between occupied regions at timet ~distribution of gap
sizes!. By average density, we mean the total number o
occurrences of a gap of sizer, divided by the system size an
averaged over the distribution of stochastic realizations fr
an empty substrate up to timet. As usual,t measures~in
arbitrary time units! the number of deposition attempts d
vided by the system size.
©2003 The American Physical Society02-1
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The evolution equations which the set ofCr(t) obeys
were derived in Ref.@12#, for the caseD51. Extension to
general rateD is obtained by multiplying byD the terms
representing precursor-mediated deposition; this gives

dCr~ t !

dt
52(

s50

`

Cr 1s1k~ t !2@r 2~k21!#Cr~ t !1Dq~ t !

3@Cr 1k~ t !2Cr~ t !# ~1!

for r>k, where the four terms represent the creation a
destruction of a gap of sizer by direct and by precursor
mediated deposition. Forr ,k there are no destruction~nega-
tive! terms, andCr(t) is easily expressed as an integral i
volving the solution of Eq.~1!. The quantity

q~ t !5H 12(
r 5k

`

@r 2~k21!#Cr~ t !J Y F(
r 5k

`

Cr~ t !G ~2!

is the average number of positions~per gap withr>k) where
a particle can physisorb before diffusing towards an edge
where chemisorption takes place. Corresponding equat
for the average density ofoccupiedregions of lengthr ~is-
lands! were derived in Ref.@10#. These equations do no
have closed form, as a consequence of the process of is
coalescence, so they were solved in Ref.@10# using trunca-
tion approximations.

Despite their nonlinearity, Eqs.~1! can be solved for gen
eral k using a similar method as in Refs.@12,13,16,18#. As
argued and verified by simulation in Refs.@12,13#, we expect
the size of the gaps withr>k to be independent of the evolv
ing island structure. This is because new gaps form~i.e.,
islands nucleate! by direct, random deposition. This leads
the assumption that gaps of sizer>k have the Poisson dis
tribution Cr(t)5A(t)exp@2(r2k)t#, whereA(t) is to be de-
termined. For initial conditions Cr(0)50 and
lim

t→0
( r 51

` rCr(t)51 corresponding to an empty substra

the solution is

Cr~ t !5
@12e2t#2@G~ t !2D#

22D
e2(r 2k)t ~3!

for r>k and

Cr~ t !5E
0

t

du@12e2u#G~u!e2ru ~4!

for r ,k, with

G~ t !5

22DE
0

t

duF~u!

F~ t !
~5!

and

F~ t !5expF ~12D !t1~22D !(
r 51

k21
12e2rt

r G . ~6!
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This solution holds fort<tc , wheretc is thesaturation time,
after which no more particles can be deposited;tc is a mea-
sure of the number of deposition attempts made until sat
tion ~in multiples ofk lattice sites!. The saturation timetc is
determined byCr(tc)50 for all r>k, and obeys equation
G(tc)5D, or

F~ tc!1E
0

tc
duF~u!52/D. ~7!

Figure 1 plotsktc , the total massof particles that have
collided with the substrate until saturation, againstD for
various particle sizesk, from D50 ~RSA!, throughD51
~ARSA!, to D5` ~on the right!. There is a point (D*
'0.125) at which all curves approximately meet; forD
.D* there is a small decrease ofktc with k ~which is maxi-
mum aroundD50.5) and forD,D* there is a large in-
crease withk. This behavior originates from different trad
offs between the direct and precursor-mediated deposi
mechanisms, each of which yields distinct forms of depo
tion failure. In the RSA limit (D→0), the saturation time
has a logarithmic divergencetc. ln(1/D), as revealed by in-
spection of Eq.~7!.

The central quantity in this system is the fraction of su
face occupied, or surfacecoverageu(t). The coverage is
directly related to the distribution of island sizes, which
not known exactly. Fortunately, thanks to the binary nat
of the problem~sites are either empty or occupied!, u(t) also
relates to the distribution of gap sizes,u(t)51
2( r 51

` rCr(t). Direct substitution of Eqs.~3! and ~4! into
this definition is cumbersome; it is much simpler to use
relation

du

dt
5k$Pk~ t !1D@12Pk~ t !#% ~8!

FIG. 1. Rescaled saturation timektc .
2-2
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between the sticking probability andPk(t)5( r 5k
` @r 2(k

21)#Cr(t), the probability that akmer lands directly on an
empty interval of sizek. This gives

u~ t !5
k

22D FDt1~12D !E
0

t

duG~u!G , ~9!

which behaves asymptotically as

u~ t !5u~ tc!2kD~ tc2t !1O~ tc2t !2 ~10!

in the approach to saturation. Also of interest is theaverage
island size^L(t)& ~and the average number of particles p
island ^L(t)&/k). This is given by^L(t)&5u/( r 51

` Cr(t),
where

(
r 51

`

Cr~ t !5
@12e2t#@G~ t !2D#

22D
1E

0

t

du@e2u2e2ku#G~u!

is the average number of islands. ForD50 andD51, these
results reduce to the standard RSA@17# and ARSA@12# ex-
pressions, respectively. Note that despite the appearanc
factor 1/(D22) in some of the expressions above, it can
shown, by expandingF(t) in powers ofD22 that all the
results are well defined and continuous forD52; in particu-
lar, F(t)→e2t andG(t)→2 in the limit D→2.

We define themass-adsorption efficiencyem as the ratio
of the mass adsorbed to the mass that has collided with
substrate until saturation. We also define theprocess effi-
ciencye as the product of the mass efficiency with the sa
ration coverage, i.e.,e5u(tc)

2/@ktc#, which is plotted in
Fig. 2.

In the special case of monomer deposition (k51), we
have

FIG. 2. Process efficiencye.
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u~ t !5
12exp@2~12D !t#

12D
, ~11!

for t<tc , an expression first derived in Ref.@10#. At the
finite time tc5 ln(1/D)/(12D), the lattice becomes ful
@u(tc)51#. Linear growth u}t @10,12#, typical of some
domain-growth models@19#, occurs only forD51. When
D,1 (.1), the sticking probabilitydu/dt decreases~in-
creases! with u. The average island size fork51 is

^L~ t !&5
u

12u

1

12e2t
. ~12!

This result yields^L&5t/@(12t)(12e2t)# for D51 and
^L&5et for D50, and implies that̂ L&;1/(12u) as u
→1 for all D. For dimer deposition (k52), Eqs. ~1!–~9!
simplify, but not sufficiently to allow the coverage to b
expressed in a simple closed form for arbitraryD.

We now return to discuss the general properties ofkmer
deposition. ForD.1, when the growth of islands is pre
ferred to their nucleation, coverageu grows exponentially. In
particular, in the scaling regime whereD→` andt→0 with
t[Dt fixed, we find that

u~ t !'
1

D F2k21

k
~ekt21!2~k21!tG , ~13!

with u(tc)512O(1/D) and tc5(1/k)ln@Dk/(2k21)#
1O(1/D). In the limit D→`, there is full coverage becaus
there is no nucleation and therefore, no gaps smaller thak
are created. However, if the initial condition~which needs to
contain at least one particle! has a finite fraction of occupied
sites, then the latter result may need modification. The div
gence of the saturation time,tc; ln(D), is a consequence o
unsuccessful direct deposition attempts~the rate of success
of these events is, after rescaling, 1/D).

In the continuum version of this model, particles of leng
1 are deposited on a 1D continuum. This version can
obtained from the lattice model in the same way as the r
dom carparking model is obtained from the lattice RS
model @17#, or the continuum ARSA is obtained from it
lattice counterpart@12#. This is done by takingk→` and t
→0, whilst keepingt[kt fixed. Carrying out this procedure
gives the following quantities for continuum ARSA with de
sorption:

F~t!5expF ~22D !E
0

t

du
12e2u

u G ,
G~t!52/F~t!,

u~t!5

Dt12~12D !E
0

t

du/F~u!

22D
, ~14!

and the saturation timetc is the solution ofF(tc)52/D.
Note thatu has the expected forms whenD50 andD51.
2-3
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To summarize, we have derived exact results for 1D de
sition with both diffusion and desorption in the precurs
state. Since the random sequential adsorption and accele
random sequential adsorption are special cases of the cu
model, previous exact solutions@12,16,17# can be derived
from the solution presented here. By changing the rate
percursor-mediated depositionD ~corresponding to desorp
tion rate 12D, for D,1), we can change between a syste
in which islands can only nucleate, through a system
which islands can both nucleate and grow, to a system
which islands grow but there is no nucleation. The syst
saturates for all values of the parameters and the resc
saturation timektc exhibits a miniumum atD51 and di-
verges asD→0 and D→`. Conversely, the process effi
ciencye has a maximum atD51 and goes to 0 asD→0 and
D→`.

The monomer version of the model (k51) can be related
to standard epidemic models@20,22#. Direct deposition of
particles on empty sites corresponds to what is known
primary infectionof susceptible sites~from external sources!,
and precursor-mediated deposition corresponds tosecondary
infectionof susceptibles~from internal infectives!. A differ-
ence relative to many epidemic models is that the rate
secondary infection of a site is proportional to the area of
neighboring infected clusters rather than to the numbe
nearest-neighbor infected sites. In the limit of infinite rate
precursor-mediated deposition,D→`, the relative rate of
deposition on empty sites~primary infection! vanishes and
only deposition through particles already deposited~second-
ary infection! takes place. Since no deposition can occur
an empty substrate~or fully susceptible population! when
D5`, we say, using terminology from probability@22#, that
u50 is an absorbing state. If, for finite rateD, the model
included desorption from the chemisorbed sites at rategD
,

d
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~corresponding to recovery of infectives@20#!, then it would
exhibit long-term quasiequilibrium states withu(`),1. If,
in addition, we took the limitD→`, then we would expect
there to be a threshold value ofg, above whichu(`)50 and
below which 0,u(`),1, i.e., the system would exhibit
continuous phase transition. This model is analogous to
contact process@22#, except for the rate of secondary infe
tion, as discussed above. Our model, in the absence of
form of desorption, also has some similarity with models
cooperative sequential adsorption~CSA! @3#, except that the
time scales are different and the relative rates of nuclea
and growth are fixed in CSA, whereas here they depend
the size of the cluster.

In practice, two-dimensional models are usually more r
evant to physical applications. The 1D system is, nevert
less, useful for obtaining analytic solutions and gaining
sight. There are two possible approaches for studying
system in two dimensions. One approach is stochastic
spatially-explicit simulation. The other approach is to exte
the above equations and to solve them using truncation m
ods such as cluster approximations@20,21#.

A number of further extensions are possible to this mod
One of these would be to consider the deposition of mixtu
of particles of different sizes, in order to model the situati
where the gaseous phase contains a mixture of gases.
could also allow the chemisorbed particles to diffuse in
empty spaces, as was done in Ref.@23#, where a 1D random
sequential adsorption model with diffusing chemisorbed p
ticles was solved exactly. Such extensions will be examin
in future work.
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